Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel

نویسندگان

  • Yanping Chen
  • Tao Tang
چکیده

In this paper, a Jacobi-collocation spectral method is developed for Volterra integral equations of second kind with a weakly singular kernel. We use some function transformation and variable transformations to change the equation into a new Volterra integral equation defined on the standard interval [−1, 1], so that the solution of the new equation possesses better regularity and the Jacobi orthogonal polynomial theory can be applied conveniently. In order to obtain high order accuracy for the approximation, the integral term in the resulting equation is approximated by using Jacobi spectral quadrature rules. The convergence analysis of this novel method is based on the Lebesgue constants corresponding to the Lagrange interpolation polynomials, polynomials approximation theory for orthogonal polynomials and the operator theory. The spectral rate of convergence for the proposed method is established in the L∞-norm and weighted L-norm. Numerical results are presented to demonstrate the effectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind

Abstract This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel φ(t, s) = (t − s)−μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233: 938– 950], the error analysis for this approach is carried out for 0 < μ < 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a ...

متن کامل

Convergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations

In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...

متن کامل

Supergeometric Convergence of Spectral Collocation Methods for Weakly Singular Volterra and Fredholm Integral Equations with Smooth Solutions

A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm...

متن کامل

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

A simple algorithm for solving the Volterra integral equation featuring a weakly singular kernel

There are many methods for numerical solutions of integral equations. In various branches of science and engineering, chemistry and biology, and physics applications integral equation is provided by many other authors. In this paper, a simple numerical method using a fuzzy, for the numerical solution of the integral equation with the weak singular kernel is provided. Finally, by providing three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2010